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ABSTRACT 

Detecting the occurrence of hydraulic accidents or contamination events in the shortest time has always 
been a significant but difficult task. The simple and efficient way is to identify the sudden changes or outliers 
hidden in the vast amounts of monitoring data produced minute by minute, which is unpractical for human. A 
new method, which employs a data self-recognition approach to achieve that automatically, has been proposed 
in this paper. The autoregressive moving average (ARMA) model was employed in this research to construct the 
self-recognition model. 56 months monitoring data from Changping water distribution network in Beijing, 
which was firstly cut into different time-slice series, was used to establish the ARMA model. This provided a 
prediction confidence interval in order to identify the outliers in the test data series. The results showed a good 
performance in outlier identification and the accuracy ranges from 90% to 95%.Thus, the ARMA model showed 
great potential in dealing with monitoring data and achieving the expected performance of data self-recognition 
technology. 
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INTRODUCTION 

Urban water distribution networks play a crucial role in the deployment of urban water resources. The 
easiest and most efficient way to monitor the status of a network is to check the monitoring data observed by 
independent online monitoring sensors, which exist in most water distribution networks. The most widely-used 
hydraulic monitoring indexes include pressure, flow rate, etc. Vast amounts of data are produced during 
consecutive 24-hour monitoring, which brings numerous data-identification tasks that are beyond the capability 
of dealing with it timely. When pipe explosion accidents occur, the pressure or flow rate data may fluctuate 
greatly or reveal weird value. However, detecting the sudden changes in vast data amounts accurately and 
timely is quite difficult by human. Therefore, a new method, which employs a data self-recognition approach to 
identify vast amounts of monitoring data, has been proposed. Data self-recognition approach can deal with all 
real-time data automatically and detect the outliers appear in the series in the shortest possible time when 
hydraulic accidents or contamination events happen. 

The autoregressive moving average (ARMA) model, as the most widely used traditional statistical model 
and data-driven model, has been used for prediction in water distribution system fields in the past decades. 
Smith (1988)  built time-series models to describe municipal water demand using similar methods. Jain et al. 
(2001) used autoregressive models to forecast weekly water demand. Zhou et al. (2000) proposed time series 
models to forecast short-term water demand variations based on four factors: trend, seasonality, climatic 
correlation and autocorrelation. The model efficiency of R2 = 89.6% and a standard error of about 8% is 
considered acceptable. In 2002, another time series model was developed for water demand projection, in which 
long-term demand variations and short-term demand variations were expressed as a Fourier series and a climatic 
regression, respectively (Zhou et al. 2002). The performance R2 of the model is only 75%, which is not adequate 
enough to be used in water distribution systems. Babel et al. (2007) developed a multiple coefficient water 
demand forecast and management model for the domestic sector considering various socio-economic, climatic 
and policy-related factors. Other data-driven models, including multi-linear regression model, artificial neural 
network, have also been used in water forecasting field. Chau (2006) reviewed the development and current 
progress of the integration of artificial intelligence into water quality modeling. 

However, few attempts have been made for monitoring data identification using data-driven models. Data 



Che et al.  Monitoring data identification approach 
 

Proceedings of the 10th International ISCRAM Conference – Baden-Baden, Germany, May 2013 
J. Geldermann, T. Comes, F. Fiedrich, S. Fortier, S., F. Wenzel and L. Yang, eds. 

 167 

self-recognition technology utilizes historical monitoring data from one independent monitoring site to assess 
and identify the validity of sensor readings. The objectives of the present study are to develop a data self-
recognition model using ARMA modeling and evaluate the performance of the model on data identification. 

MATERIALS AND METHODS 

Study area and monitoring data 

Changping district locates in the northeast of Beijing. The water distribution network in Changping district 
has over 50 monitoring stations and each dataset comprises several parameters monitored over 5 years. In the 
present study, Daoxiangcun monitoring station was selected for the analysis. The selected water parameters 
include pressure, instantaneous flow rate and integrating flow rate, 15-minute basis data series from 2006 to 
2010. In this study, the first 56 months of data (90% of the whole data series) were utilized as training data for 
model construction. The remaining is used for model validation. 

Data pre-processing 

Data pre-processing involves three steps: replacing missing data, removing outliers and cutting consecutive 
time series into slices. In the initial data series, some data was missing due to the monitoring sensor’s 
malfunction or the data transmission problem. Moving average method was used to replace the missing data to 
ensure the continuation of the series, which was the prerequisite of establishing the ARMA model. Outliers 
caused due to sensor malfunction were removed after justification with local engineers. Outliers were confirmed 
using a z-score criterion, which is: 
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where xi represents each historical value, x represents the average of the historical series, and d is the standard 
deviation of the historical value. 

When the absolute value of z is above 2, the data is called common outlier. While the absolute value of z 
is above 3, the data is called highly outlier (Abraham et al. 1989). The range of monitoring data fluctuates 
greatly due to the change of seasons and time of the day. To minimize the impact, the original data series were 
re-grouped according to season and time. The data of a certain time and season from the consecutive time series 
was extracted to form new series. In this paper, the 24 hours continuous dataset from one sensor were cut into 
96 pieces, each of which represents the data monitored at every 15 minutes, e.g. from 0:00 to 0:15. These data 
were then used to constitute 96 new data series, which represents the historical observed data for specific time 
slice. To reflect the variation of different seasons, these 96 data series were then treated to generate 384 new 
data series on the basis of the division of season. Each final data series includes 350 to 400 values. If the series 
was continued cutting into more series considering the effect of weekdays and holidays, the amount of the data 
could not guarantee the reliability of the model. Therefore, 384 data series considering the effect of certain time 
and season were produced.  

Data self-recognition 

In this study, an auto regressive and moving average modeling (ARMA) approach (Box et al. 1991) was 
employed for data self-recognition. 

A general ARMA(p,q) model, is shown below: 

0 1 1 1 1

2

0 0

( ) 0 ( ) , ( ) 0,

0,

t t p t p t t q t q

p q

t t t s

s t

x x x

E Var E s t

Ex s t


       

 

    


          


 


   
   

 

，

，

 

where p,q is the order of the model,   is the AR operator of order p, and   is the MA operator of order q. 

The ARMA modeling approach involves the following steps: determining the model structure using the 
minimum Akaike Information Criterion (AIC)( Bozdogan,1987), estimating the parameters of model and 
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examining the residuals of the model using Durbin-Watson statistics (Montgomery et al. 2001)in order to verify 
if the model is an adequate one for the series.  

Data identification 

After establishing the ARMA models, model predictions are used to identify whether the reading is a an 
outlier or not. The interval with a 95% confidence level of one-step prediction is adopted to assess the 
abnormality and shown below: 

 ˆ (1) 1.96 [ (1)]t tx Var e
 

where ˆ (1)tx  is the one-step prediction value; (1)te is the series of the residual error between the fitting data and 

observed data in training dataset; Var means variance; 

The value that falls outside the interval will be recognized as an outlier, while that falls inside the interval 
will be recognized as a normal value, which indicates that the network around the monitoring station works with 
no problem. It is worth noticing that all the “normal” words that mention below represent the situation that value 
falls inside the interval, but not refers to the Gaussian distribution in statistical field. 

Data feedback correction 

Outliers or errors would influence the accuracy of subsequent identification. For data self-recognition, 
outliers impact the trend of prediction interval, resulting in possible consecutive error judgment on data 
identification, not only for outliers but for normal data as well. Therefore, it is quite essential to have data 
feedback correction. Similar researches (Tian et al. 2004) have been conducted the same analysis on short-term 
load data forecast in electric power system field. Commonly used methods for data feedback correction include 
moving average method, data horizontal and longitudinal comparison, probability method, etc. In this study, 
moving average method is used as data feedback correction function to replace the outliers or errors to ensure 
the precision of models. 

Model performance evaluation  

The performance of data identification in different ARMA models are evaluated using the mean absolute 
percentage error (MAPE) and the outlier recognition rate. The MAPE criterion, which is defined as below, is 
used to evaluate the fitting performance of the model: 
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where fi and oi are the fitting and observed values, respectively, and n is the number of total training data. The 
value of MAPE can reflect the effectiveness of the models. 

 The outlier recognition rate (ORR) is defined as: 
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where mf and mt are the number of recognized outliers and the number of total outliers, respectively. 

In this study, artificial simulated outlier sequences were added to the original series to test the identification 
performance of the models. Each original series contain three types of artificial simulated outlier sequences, 
each of which consist of 50 random data. 5,10,20 outliers were added to different types of sequences 
respectively. The identification performance was demonstrated by the outlier recognition rate of each sequence. 

RESULTS AND DISCUSSIONS 

384 ARMA models were developed using instantaneous flow rate data by MATLAB software. Due to the 
limitation of length, 16 typical models, which were built by the data series at 0:00, 06:00, 12:00, 18:00 in four 
seasons respectively, were mainly discussed in this paper. ARMA model at 06:00 in autumn is shown in 
Figure.1 as an example. The MAPE value of the model in Figure.1 is 8.73%, which showed a good fitting 
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performance. The average MAPE value of most established models were approximately 10%, except for some 
rare series whose MAPE value was nearly 20%.  
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Figure.2(a) Figure.2(b) 
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Figure.2(c) Figure.2(d) 

Figure.1 ARMA model at 06:00 in autumn Figure.2 data identification performances in four seasons 

The data identification graphs without data feedback correction for models at 12:00 in four seasons are 
shown in Figure.2. Comparing the graphs in Figure.2, it is observed that four models in different seasons 
correspond to four different types of identification performance. In the spring models (Figure. 2(a)), the data 
series is stable and all data are within the prediction confidence interval, which indicates that this part of the 
network is in normal status. In the summer models (Figure. 2(b)), the data series is also stable. Only few data 
increase suddenly outside the interval, which indicates that these data are recognized as outliers. In the autumn 
models (Figure. 2(c)), the data series fluctuates frequently resulting in an opposite trend for prediction interval 
due to the lag of the model. Thus, it is hard to tell whether the data recognized by the model is really an outlier 
or not. In the winter models (Figure. 2(d)), the series is not stationary and suddenly-increased data appear 
consecutively. It can also be seen from Figure.2 that series during different periods of time and seasons have 
different trends, which proved the necessity of time series slice cutting. 

To test the performance of data identification in quantitative perspective, 5,10,20 outliers were added to the 
original series, respectively. For each series, prediction and identification were made in two ways: with data 
feedback correction and without it. The results for series at 06:00 in summer with 10 added outliers were shown 
in Figure.3. 
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Figure.3  data identification performance at 06:00 in summer with/without data feedback correction 

As shown in Figure.3, all outlier recognition rates for models with data feedback correction are 100%. For 
models without data feedback correction, the outlier recognition rates are 80%, 50% and 25% respectively. It is 
obvious that the models with correction showed greater performance in outlier identification. A summary for the 
ORR performances of other models is given in Table 1. 

Table 1  the ORR performances of models 

ORR 
Model 

5-outlier 10-outlier 20-outlier 

With DFC Without DFC With DFC Without DFC With DFC Without DFC 

00:00 of spring 100% 100% 100% 70% 100% 35% 
 06:00 of summer 100% 80% 100% 50% 100% 25% 
 12:00 of autumn 100% 80% 100% 60% 90% 40% 
18:00 of winter 100% 60% 60% 20% 95% 15% 
Average 100% 80% 90% 50% 96.3% 28.8% 
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DFC= Data Feedback Correction 

For the 5-outliers artificially simulated sequences, the average ORR is 100% and 80% corresponding to the 
models with data feedback correction and without it, respectively. For the 10-outliers artificially simulated 
sequences, the average ORR is 90% and 50% respectively. For the 20-outliers artificially simulated sequences, 
the average ORR is 96.3% and 28.8% respectively. It can obviously be noticed that models with data feedback 
correction step have great potential in outlier identification with an average performance over 90%. Meanwhile 
performances of models without data feedback correction are poor in outlier identification with an average 
performance only about 53%. 

CONCLUSIONS 

A data self-recognition method based on ARMA modeling was proposed in this research for online 
monitoring data quality control. The results showed that series in different periods of time and seasons have 
different trends, which proved the necessity of time series slice cutting.  

Results show that models with data feedback correction step had great potential in outlier identification 
with an average performance over 90%, while models without that step were poor in outlier identification with 
an average performance of only about 53%, which can’t satisfy the expected effect.  

Based on the findings of this study, it is concluded that data self-recognition modeling can be successfully 
applied to establish reliable monitoring data identification models for detecting outliers timely when hydraulic 
accidents or contamination events happen. It is also concluded that data feedback correction is essential for data 
self-recognition and can reduce workload significantly. 
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